迭代
n = 5
df = pd.DataFrame({'A':pd.date_range(start = '2021-01-01',periods = n, freq = 'D'),'x':np.linspace(0, stop = n-1,num = n),'c':np.random.choice(['low','medium','high'],n).tolist()})
print(df)
# 输出结果:
# A x c
# 0 2021-01-01 0.0 high
# 1 2021-01-02 1.0 medium
# 2 2021-01-03 2.0 medium
# 3 2021-01-04 3.0 high
# 4 2021-01-05 4.0 medium
for col in df:
print(col)
# 输出结果:
# A
# x
# c
df_1 = pd.DataFrame(np.random.randn(3,3), columns=['col1','col2','col3'])
for key,item in df.iteritems()[:1]:
print(key,'\n',item)
print()
# 输出结果:
# A
# 0 2021-01-01
# 1 2021-01-02
# 2 2021-01-03
# 3 2021-01-04
# 4 2021-01-05
# Name: A, dtype: datetime64[ns]
# x
# 0 0.0
# 1 1.0
# 2 2.0
# 3 3.0
# 4 4.0
# Name: x, dtype: float64
# c
# 0 high
# 1 medium
# 2 medium
# 3 high
# 4 medium
# Name: c, dtype: object
for row_index,row in df.iterrows():
print(row_index, row)
print()
# 输出结果:
# 0 A 2021-01-01 00:00:00
# x 0
# c high
# Name: 0, dtype: object
# 1 A 2021-01-02 00:00:00
# x 1
# c medium
# Name: 1, dtype: object
# 2 A 2021-01-03 00:00:00
# x 2
# c medium
# Name: 2, dtype: object
# 3 A 2021-01-04 00:00:00
# x 3
# c high
# Name: 3, dtype: object
# 4 A 2021-01-05 00:00:00
# x 4
# c medium
# Name: 4, dtype: object
for row in df.itertuples():
print(row)
print()
# 输出结果:
# Pandas(Index=0, A=Timestamp('2021-01-01 00:00:00'), x=0.0, c='high')
# Pandas(Index=1, A=Timestamp('2021-01-02 00:00:00'), x=1.0, c='medium')
# Pandas(Index=2, A=Timestamp('2021-01-03 00:00:00'), x=2.0, c='medium')
# Pandas(Index=3, A=Timestamp('2021-01-04 00:00:00'), x=3.0, c='high')
# Pandas(Index=4, A=Timestamp('2021-01-05 00:00:00'), x=4.0, c='medium')